If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18z^2+9z+1=0
a = 18; b = 9; c = +1;
Δ = b2-4ac
Δ = 92-4·18·1
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3}{2*18}=\frac{-12}{36} =-1/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3}{2*18}=\frac{-6}{36} =-1/6 $
| -154=-7x-6(1+5x) | | 0=x^2-15x+72 | | 6x4-7x2=3 | | 9(x+4)=10 | | 2c=c+53 | | 3(x+6)+8x=11x18 | | x4-3x2-7=0 | | ¼x=22 | | 12-6/2x3= | | 6(q-7)-3(4-9)=0 | | ½x=10 | | 6x=23. | | 0.1x+0.07(17000-x)=1280 | | 0.1+0.07(17000-x)=1280 | | X+2x+2x=324 | | 4x+(3x+13)+(x+7)=180 | | 4(x−3)−0+2x=5(3x−7)−9x | | -7y-15=4y+18 | | 8-50+3x-10=180 | | 2t=t+23 | | 116=2x-8 | | m=73m-2 | | 10p=p+54 | | 5(x+2)+62=-4x | | 4x+9+11=180 | | 6x-2x+15=38 | | t+30=4t | | X+x+18=20 | | 3/4(m+4)=+3 | | (1-3x^2)^2=0 | | 4x-2x+11=88 | | 2x+13-9=4x+10 |